
Prologin System Administration
Release 2020

Association Prologin

Aug 16, 2020

CONTENTS

1 Infrastructure overview 3
1.1 Needs . 3
1.2 Network infrastructure . 4
1.3 Machine database . 4
1.4 User database . 4
1.5 File storage . 5
1.6 DHCP and DNS . 5
1.7 Matches cluster . 6
1.8 Other small services . 6

2 Setup instructions 7
2.1 Step 0: hardware and network setup . 7
2.2 Step 1: setting up the core services: MDB, DNS, DHCP . 8
2.3 Step 2: file storage . 19
2.4 Step 3: booting the user machines . 20
2.5 Step 4: Concours . 22
2.6 Step 5: Setting up masternode and workernode . 23
2.7 Step 6: Switching to contest mode . 24
2.8 Common tasks . 24

3 Misc services 27
3.1 /sgoinfre . 27
3.2 doc . 28
3.3 paste . 28
3.4 Redmine . 28
3.5 Homepage . 30
3.6 DJ-Ango . 30
3.7 IRC . 31

4 Monitoring 33
4.1 Setup . 33
4.2 Monitoring services . 33
4.3 Grafana configuration . 34
4.4 Monitoring screen how-to . 34
4.5 Log monitoring . 34

5 Arch Linux repository 37
5.1 Usage . 37
5.2 SADM related packages . 37
5.3 Uploading packages . 37

i

5.4 More information . 38
5.5 Troubleshooting . 38

6 Cookbook 39
6.1 Server setup . 39
6.2 Testing on qemu/libvirt . 39
6.3 User related operations . 39
6.4 Machine registration . 40
6.5 Network FS related operations . 40

7 Running the websites without a complete SADM setup 43
7.1 Working on concours . 44

8 Container setup for SADM 45
8.1 Why containers? . 45
8.2 Overview . 46
8.3 Networkd in your base system . 46
8.4 Automated container setup . 46
8.5 What do the scripts do? . 47
8.6 BTRFS snapshots . 47
8.7 Cleaning up . 47
8.8 Containers deep dive . 47
8.9 Virtual network setup . 47
8.10 Setting up gw manually . 48
8.11 Manual network configuration . 50

9 Going further/discussion 51

10 Disaster recovery 53
10.1 Disk failure . 53

11 Indices and tables 55

ii

Prologin System Administration, Release 2020

This documentation hopefully explains everything there is to know about the infrastructure used at Prologin to host the
finals of the contest. Our needs are surprisingly complex to meet with our low budgets and low control over the hardware
and network, which explains why some things seem very complicated.

CONTENTS 1

Prologin System Administration, Release 2020

2 CONTENTS

CHAPTER

ONE

INFRASTRUCTURE OVERVIEW

This section describes what runs on our servers and what it is used for.

1.1 Needs

• Host 100 contest participants + 20 organizers on diskless computers connected to a strangely wired network (2
rooms with low bandwidth between the two).

• Run several internal services:
– DHCP + DNS
– Machine DataBase (MDB)
– User DataBase (UDB)
– NTPd

• Run several external services (all of these are described later):
– File storage
– Homepage server
– Wiki
– Contest website
– Bug tracking software (Redmine)
– Documentation pages
– IRC server
– Pastebin
– Matches cluster

3

Prologin System Administration, Release 2020

1.2 Network infrastructure

We basically have two local networks:
• User LAN, containing every user machine (Pasteur + IP12A) and all servers.
• Matches LAN, containing the cluster master and all the cluster slaves.

The User LAN uses 192.168.0.0/24, and the gateway (named gw) is 192.168.1.254. 192.168.1.0/24 is reserved for
servers, and 192.168.250.0/24 is reserved for machines not in the MDB.
The Matches LAN uses 192.168.2.0/24, and the gateway (named gw.cl) is 192.168.2.254.
Both gw and gw.cl communicate through an OpenVPN point to point connection.

1.3 Machine database

The Machine DataBase (MDB) is one of the most important part of the architecture. Its goal is to track the state of all
the machines on the network and provide information about the machines to anyone who needs it. It is running on mdb
and exports a web interface for administration (accessible to all roots).
A Python client is available for scripts that need to query it, as well as a very simple HTTP interface for use in PXE
scripts.
It stores the following information for each machine:

• Main hostname
• Alias hostnames (mostly for services that have several DNS names)
• IP
• MAC
• Nearest root NFS server
• Nearest home NFS server
• Machine type (user, orga, cluster, service)
• Room id (pasteur, alt, cluster, other)

It is the main data source for DHCP, DNS, monitoring and other stuff.
When a machine boots, an IPXE script will lookup the machine info from the MDB (to get the hostname and the nearest
NFS root). If it is not present, it will ask for information on stdin and register the machine in the MDB.

1.4 User database

The User DataBase (UDB) stores the user information. As with MDB, it provides a simple Python client library as well
as a web interface (accessible to all organizers, not only roots). It is running on udb.
It stores the following information for every user:

• Login
• First name
• Last name
• Current machine name

4 Chapter 1. Infrastructure overview

Prologin System Administration, Release 2020

• Password (unencrypted so organizers can give it back to people who lose it)
• At his computer right now (timestamp of last activity)
• Type (contestant, organizer, root)
• SSH key (mostly useful for roots)

As with the MDB, the UDB is used as the main data source for several services: every service accepting logins from users
synchronizes the user data from the UDB (contest website, bug tracker, …). A pam_udb service is also used to handle
login on user machines.

1.5 File storage

4 classes of file storage, all using NFS over TCP (to handle network congestion gracefully):
• Root filesystem for the user machines: 99% reads, writes only done by roots.
• Home directories filesystem: 50% reads, 50% writes, needs low latency
• Shared directory for users junk: best effort, does not need to be fast, if people complain, tell them off.
• Shared directory for champions/logs/maps/…: 35% reads, 65% writes, can’t be sharded, needs high bandwidth and
low latency

Root filesystem is manually replicated to several file servers after any change by a sysadmin. Each machine using the root
filesystem will interogate the MDB at boot time (from an IPXE script) to know what file server to connect to. These file
servers are named rfs-1, rfs-2, One of these file servers (usually rfs-1) is aliased to rfs. It is the one
roots should connect to in order to write to the exported filesystem. The other rfs servers have the exported filesystem
mounted as read-only, except when syncing.
Home directories are sharded to several file servers. Machines interogate the MDB to know what home file server is the
nearest. When a PAM session is opened, a script interogates the UDB to know what file server the home directory is
hosted on. If it is not the correct one, it sends a sync query to the old file server to copy the user data to the new file server.
These file servers are named hfs-1, hfs-2, ...

The user shared directory is just one shared NFS mountpoint for everyone. It does not have any hard performance
requirement. If it really is too slow, it can be sharded as well (users will see two shared mount points and will have to
choose which one to use). This file server is called shfs.
The shared directory for matches runners is not exposed publicly and only machines from the matches cluster can connect
to it. It is a single NFS mounpoint local to the rack containing the matches cluster. The server is connected with 2Gbps to
a switch, and each machine from the cluster is connecter do the same switch with a 1Gbps link. This file server is running
on fs.cl, which is usually the same machine as gw.cl.

1.6 DHCP and DNS

The DHCP server for the user network runs on gw. It is responsible for handing out IPs to machines connecting to the
network. The MAC<->IP mapping is generated from MDB every minute. Machines that are not in the MDB are given
an IP from the 192.168.250.0/24 range.
The DHCP server for the cluster network runs on gw.cl. The MAC<->IP mapping is also generated from MDB, but
this time the unknown range is 192.168.2.200 to 192.168.2.250.
The DNS server for the whole infrastructure runs on ns, which is usually the same machine as gw. The hostname<-
>IP mapping is generated from MDB every minute. There are also some static mappings for the unknown ranges:
192.168.250.x is mapped to alien-x and 192.168.2.200-250 is mapped to alien-x.cl.

1.5. File storage 5

Prologin System Administration, Release 2020

1.7 Matches cluster

Thematches cluster contains several machines dedicated to running Stechecmatches. It is a separate physical architecture,
in a separate building, on a separate LAN. The two gateways, gw.cl and gw are connected through an OpenVPN tunnel.
master.cl runs the Stechec master node, which takes orders from the Stechec website (running on contest, on the
main LAN). All nodes in the cluster are connected to the master node.
To share data, all the nodes are connected to a local NFS share: fs.cl. Read the file storage overview for more
information.

1.8 Other small services

Here is a list of all the other small services we provide that don’t really warrant a long explanation:
• Homepage: runs on homepage, provides the default web page displayed to contestants in their browser
• Wiki: runs on wiki, UDB aware wiki for contestants
• Contest website: runs on contest, contestants upload their code and launch matches there
• Bug tracker: bugs, UDB aware Redmine
• Documentations: docs, language and libraries docs, also rules, API and Stechec docs.
• IRC server: irc, small UnrealIRCd without services, not UDB aware
• Paste: paste, random pastebin service

6 Chapter 1. Infrastructure overview

CHAPTER

TWO

SETUP INSTRUCTIONS

If you are like the typical Prologin organizer, you’re probably reading this documentation one day before the start of
the event, worried about your ability to make everything work before the contest starts. Fear not! This section of the
documentation explains everything you need to do to set up the infrastructure for the finals, assuming all the machines
are already physically present. Just follow the guide!
Maintainers:

• Alexandre Macabies (2013-2019)
• Antoine Pietri (2013-2018)
• Rémi Audebert (2014-2019)
• Paul Hervot (2014, 2015)
• Marin Hannache (2013, 2014)
• Pierre Bourdon (2013, 2014)
• Nicolas Hureau (2013)
• Pierre-Marie de Rodat (2013)
• Sylvain Laurent (2013)

2.1 Step 0: hardware and network setup

Before installing servers, we need to make sure all the machines are connected to the network properly. Here are the
major points you need to be careful about:

• Make sure to balance the number of machines connected per switch: the least machines connected to a switch, the
better performance you’ll get.

• Inter-switch connections is not very important: we tried to make most things local to a switch (RFS + HFS should
each be local, the rest is mainly HTTP connections to services).

• Have a very limited trust on the hardware that is given to you, and if possible reset them to a factory default.
For each pair of switches, you will need one RHFS server (connected to the 2 switches via 2 separate NICs, and hosting
the RFS + HFS for the machines on these 2 switches). Please be careful out the disk space: assume that each RHFS has
about 100GB usable for HFS storage. That means at most 50 contestants (2GB quota) or 20 organizers (5GB quota) per
RHFS. With contestants that should not be a problem, but try to balance organizers machines as much as possible.
You also need one gateway/router machine, which will have 3 different IP addresses for the 3 logical subnets used during
the finals:

Users and services 192.168.0.0/23

7

Prologin System Administration, Release 2020

Alien (unknown) 192.168.250.0/24
Upstream Based on the IP used by the bocal internet gateway.

Contestants and organizers must be on the same subnet in order for UDP broadcasting to work between them. This is
required for most video games played during the finals: server browsers work by sending UDP broadcast announcements.
Having services and users on the same logical network avoids all the traffic from users to services going through the
gateway. Since this includes all RHFS traffic, we need to make sure this is local to the switch and not being routed via the
gateway. However, for clarity reasons, we allocate IP addresses in the users and services subnet like this:

Users 192.168.0.0 - 192.168.0.253
Services and organizers machines 192.168.1.0 - 192.168.1.253

2.2 Step 1: setting up the core services: MDB, DNS, DHCP

This is the first and trickiest part of the setup. As this is the core of the architecture, everything kind of depends on each
other:

8 Chapter 2. Setup instructions

Prologin System Administration, Release 2020

Fortunately, we can easily work around these dependencies in the beginning.
All these core services will be running on gw, the network gateway. They could run elsewhere but we don’t have a lot of
free machines and the core is easier to set up at one single place.
The very first step is to install an Arch Linux system for gw. We have scripts to make this task fast and easy.

2.2. Step 1: setting up the core services: MDB, DNS, DHCP 9

Prologin System Administration, Release 2020

2.2.1 Basic system: file system setup

Note: The installation process is partially automated with scripts. You are strongly advised to read them and make sure
you understand what they are doing.

Let’s start with the hardware setup. You can skip this section if you are doing a containerized install or if you already
have a file system ready.
For gw and other critical systems such as web, we setup a RAID1 (mirroring) over two discs. Because the RAID will be
the size of the smallest disc, they have to be of the same capacity. We use regular 500GBytes SATA, which is usually
more than enough. It is a good idea to choose two different disks (brand, age, batch) to reduce the chance to have them
failing at the same time.
On top of the RAID1, our standard setup uses LVM to create and manage the system partition. For bootloading the
system we use the good old BIOS and syslinux.
All this setup is automated by our bootstrap scripts, but to run them you will need a bootstrap Linux distribution. The
easiest solution is to boot on the Arch Linux’s install medium https://wiki.archlinux.org/index.php/Installation_guide#
Boot_the_live_environment.
Once the bootstrap system is started, you can start the install using:

bash <(curl https://raw.githubusercontent.com/prologin/sadm/master/install_scripts/
↪→bootstrap_from_install_medium.sh)

This script checks out sadm, then does the RAID1 setup, installs Arch Linux and configures it for RAID1 boot. So far
nothing is specific to sadm and you could almost use this script to install yourself an Arch Linux.
When the script finishes the system is configured and bootable, you can restart the machine:

reboot

The machine should reboot and display the login tty. To test this step:
• The system must boot
• Systemd should start without any [FAILED] item.
• Log into the machine as root with the password you configured.
• Check that the hostname is gw.prolo by invoking hostnamectl:

Static hostname: gw.prolo
Icon name: computer-container

Chassis: container
Machine ID: 603218907b0f49a696e6363323cb1833

Boot ID: 65c57ca80edc464bb83295ccc4014ef6
Virtualization: systemd-nspawn

Operating System: Arch Linux
Kernel: Linux 4.6.2-1-ARCH

Architecture: x86-64

• Check that the timezone is Europe/Paris and NTP is enabled using timedatectl:

Local time: Fri 2016-06-24 08:53:03 CEST
Universal time: Fri 2016-06-24 06:53:03 UTC

RTC time: n/a
Time zone: Europe/Paris (CEST, +0200)

(continues on next page)

10 Chapter 2. Setup instructions

https://en.wikipedia.org/wiki/Standard_RAID_levels#RAID_1
https://wiki.archlinux.org/index.php/LVM
https://wiki.archlinux.org/index.php/Installation_guide#Boot_the_live_environment
https://wiki.archlinux.org/index.php/Installation_guide#Boot_the_live_environment
https://wiki.archlinux.org/index.php/Time#Time_synchronization

Prologin System Administration, Release 2020

(continued from previous page)
Network time on: yes
NTP synchronized: yes
RTC in local TZ: no

• Check the NTP server used:

systemctl status systemd-timesyncd
Sep 25 13:49:28 halfr-thinkpad-e545 systemd-timesyncd[13554]: Synchronized to␣
↪→time server 212.47.239.163:123 (0.arch.pool.ntp.org).

• Check that the locale is en_US.UTF8 with the UTF8 charset using localectl:

System Locale: LANG=en_US.UTF-8
VC Keymap: n/a

X11 Layout: n/a

• You should get an IP from DHCP if you are on a network that has such a setup, else you can add a static IP using
a systemd-network .network configuration file.

2.2.2 Basic system: SADM

We will now start to install and configure everything that is Prologin-specific. The bootstrap script has already copied the
sadm repository to /root/sadm. We will now use a script that installs the dependencies that have to be present on all
system using sadm. We are running the script on gw.prolo and it will executed on every systems: rhfs, web, rfs.

cd /root/sadm/install_scripts
./setup_sadm.sh

This script also creates a python virtual environment. Each time you log into a new system, activate the virtualenv:

source /opt/prologin/venv/bin/activate

2.2.3 Basic system: gw

Once the system is SADM-ready, perform installs specific to gw.prolo:

./setup_gw.sh

2.2.4 Gateway network configuration

gw has multiple static IPs used in our local network:
• 192.168.1.254/23 used to communicate with both the services and the users
• 192.168.250.254/24 used to communicate with aliens (aka. machines not in mdb)

It also has IP to communicate with the outside world:
• 10.?.?.?/8 static IP given by the bocal to communicate with the bocal gateway
• 163.5.??.??/16 WAN IP given by the CRI

2.2. Step 1: setting up the core services: MDB, DNS, DHCP 11

Prologin System Administration, Release 2020

The network interface(s) are configured using systemd-networkd. Our configuration files are stored in etc/
systemd/network/ and will be installed in /etc/systemd/network during the next step.
Two files must be modified to match the hardware of the machine:

• etc/systemd/network/10-gw.link: edit the MACAddress field of the file to set the MAC address of
your NIC.

• etc/systemd/network/10-gw.network: we enable DHCP configuration and set the local network static
IPs. You can edit this file to add more static IPs or set the gateway you want to use.

For this step, we use the following systemd services:
• From systemd: systemd-networkd.service: does the network configuration, interface renaming, IP set-
ting, DHCP getting, gateway configuring, you get the idea. This service is enabled by the Arch Linux bootstrap
script.

• From sadm: nic-configuration@.service: network interface configuration, this service should be en-
abled for each of the interface on the system.

• From sadm: conntack.service: does the necessary logging to comply with the fact that we are responsible
for what the users are doing when using our gateway to the internet.

For more information, see the systemd-networkd documentation.
Then, install them:

python install.py systemd_networkd_gw nic_configuration conntrack
you can now edit the configuration files as previously described
systemctl enable --now systemd-networkd conntrack
`prologin` is the name of the interface to apply the configuration
systemctl enable --now nic-configuration@prologin

At this point you should reboot and test your network configuration:
• Your network interfaces should be up (ip link show shoud show state UP for all interfaces but lo).
• The IP addresses (ip address show) are correctly set to their respective interfaces.
• Default route (ip route show) should be the CRI’s gateway.
• DNS is not working until you setup ``mdbdns``, so keep on!

2.2.5 Setup PostgreSQL on gw

First we need a database to store all kind of data we have to manipulate. There are two main PostgreSQL databases
systems running the final, the first is on gw and the second is on web. The one on gw is used for sadm critical data such
as the list of machines and users, while the one on web is used for contest related data.
By running this command, you will install the configuration files and start the database system:

cd sadm
python install.py postgresql
systemctl enable --now postgresql

To test this step:

$ systemctl status postgresql.service
● postgresql.service - PostgreSQL database server

Loaded: loaded (/usr/lib/systemd/system/postgresql.service; enabled; vendor␣
↪→preset: disabled)

(continues on next page)

12 Chapter 2. Setup instructions

http://www.freedesktop.org/software/systemd/man/systemd-networkd.html

Prologin System Administration, Release 2020

(continued from previous page)
Active: active (running) since Sun 2016-09-25 15:36:43 CEST; 2h 29min ago

Main PID: 34 (postgres)
CGroup: /machine.slice/machine-gw.scope/system.slice/postgresql.service

├─34 /usr/bin/postgres -D /var/lib/postgres/data
├─36 postgres: checkpointer process
├─37 postgres: writer process
├─38 postgres: wal writer process
├─39 postgres: autovacuum launcher process
└─40 postgres: stats collector process

$ ss -nltp | grep postgres
LISTEN 0 128 *:5432 *:* ␣
↪→users:(("postgres",pid=34,fd=3))
LISTEN 0 128 :::5432 :::* ␣
↪→users:(("postgres",pid=34,fd=4))
$ su - postgres -c 'psql -c \\l'

List of databases
Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+-------------+-------------+-----------------------
postgres | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
template0 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +

| | | | | postgres=CTc/postgres
template1 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/postgres +

| | | | | postgres=CTc/postgres
(3 rows)

2.2.6 mdb

We now have a basic environment to start setting up services on our gateway server. We’re going to start by installing
mdb and configuring nginx as a reverse proxy for this application.
First, we need to install nginx:

$ pacman -S nginx

In order to test if mdb is working properly, we need to go to query http://mdb/ with a command line tool like
curl. However, to get DNS working, we need mdbdns, which needs mdbsync, which needs mdb. As a temporary
workaround, we’re going to add mdb to our /etc/hosts file:

echo '127.0.0.1 mdb' >> /etc/hosts

Similarly, our nginx configuration depends on the sso host to resolve, without what nginx will refuse to start. We have
to define it statically too:

echo '127.0.0.1 sso' >> /etc/hosts

Then install mdb. Fortunately, a very simple script is provided with the application in order to setup what it requires:

You can then proceed to install
python install.py mdb
mv /etc/nginx/nginx.conf{.new,}
^ To replace the default configuration by our own.

Note: You don’t have to create super users for mdb or udb using the manage.py command. The root users you will
add to udb will be super user and replicated to mdb. If you want to modify the databases before that, use manage.py

2.2. Step 1: setting up the core services: MDB, DNS, DHCP 13

Prologin System Administration, Release 2020

shell.

This command installed the mdb application to /var/prologin/mdb and installed the systemd and nginx con-
figuration files required to run the application.
You should be able to start mdb and nginx like this:

systemctl enable --now mdb
systemctl enable --now nginx

Now you should get an empty list when querying /call/query:

curl http://mdb/call/query
Should return []

Congratulations, mdb is installed and working properly!
You can check the journal for nginx, and should see:

journalctl -fu nginx
...
Mar 22 20:12:12 gw systemd[1]: Started Openresty, a powerful web app server,␣
↪→extending nginx with lua scripting.
Mar 22 20:14:13 gw nginx[46]: 2017/03/22 20:14:13 [error] 137#0: *1 connect() failed␣
↪→(111: Connection refused), client: 127.0.0.1, server: mdb, request: "GET /query␣
↪→HTTP/1.1", host: "mdb"
Mar 22 20:14:13 gw nginx[46]: 2017/03/22 20:14:13 [error] 137#0: *1 [lua] access.
↪→lua:77: SSO: could not query presenced: failed to join remote: connection refused,␣
↪→client: 127.0.0.1, server: mdb, request: "GET /query HTTP/1.1", host: "mdb"

Note: nginx will log an error (connect() failed (111: Connection refused), client: 127.
0.0.1, server: mdb) when attempting to connect to the upstream, this is normal and should only happen for the
first time you connect to a service.

2.2.7 mdbsync

The next step now is to setup mdbsync. mdbsync is a Tornado web server used for applications that need to react on
mdb updates. The DHCP and DNS config generation scripts use it to automatically update the configuration when mdb
changes. Once again, setting up mdbsync is pretty easy:

python install.py mdbsync
systemctl enable --now mdbsync
systemctl reload nginx
echo '127.0.0.1 mdbsync' >> /etc/hosts

To check if mdbsync is working, try to register for updates:

python -c 'import prologin.mdbsync.client; prologin.mdbsync.client.connect().poll_
↪→updates(print)'
Should print {} {} and wait for updates

14 Chapter 2. Setup instructions

Prologin System Administration, Release 2020

2.2.8 mdbdns

mdbdns gets updates from mdbsync and regenerates the DNS configuration. Once again, an installation script is
provided:

python install.py mdbdns
mv /etc/named.conf{.new,}
^ To replace the default configuration by our own.
systemctl enable --now mdbdns
systemctl enable --now named

We now need to add a record in mdb for our current machine, gw, so that DNS configuration can be generated:

cd /var/prologin/mdb
python manage.py addmachine --hostname gw --mac 11:22:33:44:55:66 \

--ip 192.168.1.254 --rfs 0 --hfs 0 --mtype service --room pasteur \
--aliases mdb,mdbsync,ns,netboot,udb,udbsync,presencesync,ntp,sso

Once this is done, mdbdns should have automagically regenerated the DNS configuration:

host mdb.prolo 127.0.0.1
Should return 192.168.1.254

You can now remove the lines related to mdb, mdbsync and sso from your /etc/hosts file.

2.2.9 mdbdhcp

mdbdhcp works just like mdbdns, but for DHCP. You must edit dhcpd.conf to add an empty subnet for the IP
given by the Bocal. If it is on the same interface as 192.168.0.0/23, add it inside the shared-network prolo-lan,
else add it to a new shared-network:

python install.py mdbdhcp
mv /etc/dhcpd.conf{.new,}
^ To replace the default configuration by our own.
$EDITOR /etc/dhcpd.conf
systemctl enable --now mdbdhcp

The DHCP server will provide the Arch Linux install medium for all the servers, for that, download the Netboot Live
System:

See https://www.archlinux.org/releng/netboot/
wget https://www.archlinux.org/static/netboot/ipxe.pxe -O /srv/tftp/arch.kpxe

Start the DHCP server:

systemctl enable --now dhcpd4

Note: gw needs to have 192.168.1.254/23 as a static IP or else dhcpd will not start.

To test this step:

$ systemctl status dhcpd4
● dhcpd4.service - IPv4 DHCP server

Loaded: loaded (/usr/lib/systemd/system/dhcpd4.service; enabled; vendor preset:␣
↪→disabled)

(continues on next page)

2.2. Step 1: setting up the core services: MDB, DNS, DHCP 15

Prologin System Administration, Release 2020

(continued from previous page)
Active: active (running) since Sun 2016-09-25 18:41:57 CEST; 6s ago
Process: 1552 ExecStart=/usr/bin/dhcpd -4 -q -cf /etc/dhcpd.conf -pf /run/dhcpd4.

↪→pid (code=exited, status=0/SUCCESS)
Main PID: 1553 (dhcpd)
CGroup: /machine.slice/machine-gw.scope/system.slice/dhcpd4.service

└─1553 /usr/bin/dhcpd -4 -q -cf /etc/dhcpd.conf -pf /run/dhcpd4.pid

Sep 25 18:41:57 gw systemd[1]: Starting IPv4 DHCP server...
Sep 25 18:41:57 gw dhcpd[1552]: Source compiled to use binary-leases
Sep 25 18:41:57 gw dhcpd[1552]: Wrote 0 deleted host decls to leases file.
Sep 25 18:41:57 gw dhcpd[1552]: Wrote 0 new dynamic host decls to leases file.
Sep 25 18:41:57 gw dhcpd[1552]: Wrote 0 leases to leases file.
Sep 25 18:41:57 gw dhcpd[1553]: Server starting service.
Sep 25 18:41:57 gw systemd[1]: Started IPv4 DHCP server.
$ ss -a -p | grep dhcpd
p_raw UNCONN 0 0 *:host0 * ␣
↪→users:(("dhcpd",pid=1553,fd=5))
u_dgr UNCONN 0 0 * 7838541 * 7790415 ␣
↪→users:(("dhcpd",pid=1553,fd=3))
raw UNCONN 0 0 *:icmp *:* ␣
↪→users:(("dhcpd",pid=1553,fd=4))
udp UNCONN 0 0 *:64977 *:* ␣
↪→users:(("dhcpd",pid=1553,fd=20))
udp UNCONN 0 0 *:bootps *:* ␣
↪→users:(("dhcpd",pid=1553,fd=7))
udp UNCONN 0 0 :::57562 :::* ␣
↪→users:(("dhcpd",pid=1553,fd=21))

2.2.10 netboot

Netboot is a small HTTP service used to handle interactions with the PXE boot script: machine registration and serving
kernel files. Once again, very simple setup:

python install.py netboot
systemctl enable --now netboot
systemctl reload nginx

2.2.11 TFTP

The TFTP server is used by the PXE clients to fetch the first stage of the boot chain: the iPXE binary (more on that in
the next section). We simply setup tftp-hpa:

systemctl enable --now tftpd.socket

The TFTP server will serve files from /srv/tftp. We’ll put files in this directory in the next step, and then during the
setup of the exported NFS system.

16 Chapter 2. Setup instructions

Prologin System Administration, Release 2020

2.2.12 iPXE bootrom

The iPXE bootrom is an integral part of the boot chain for user machines. It is loaded by the machine BIOS via PXE and
is responsible for booting the Linux kernel using the nearest RFS. It also handles registering the machine in the MDB if
needed.
We need a special version of iPXE supporting the LLDP protocol to speed up machine registration. We have a pre-built
version of the PXE image in our Arch Linux repository:

pacman -S ipxe-sadm-git

This package installs the PXE image as /srv/tftp/prologin.kpxe.

2.2.13 udb

Install udb using the install.py recipe:

python install.py udb

Enable the service:

systemctl enable --now udb
systemctl reload nginx

You can then import all contestants information to udb using the batchimport command:

cd /var/prologin/udb
python manage.py batchimport --file=/root/finalistes.txt

The password sheet data can then be generated with this command, then printed by someone else:

python manage.py pwdsheetdata --type=user > /root/user_pwdsheet_data

Then do the same for organizers:

python manage.py batchimport --logins --type=orga --pwdlen=10 \
--file=/root/orgas.txt

python manage.py pwdsheetdata --type=orga > /root/orga_pwdsheet_data

Then for roots:

python manage.py batchimport --logins --type=root --pwdlen=10 \
--file=/root/roots.txt

python manage.py pwdsheetdata --type=root > /root/root_pwdsheet_data

2.2.14 udbsync

usbsync is a server that pushes updates of the user list.
Again, use the install.py recipe:

python install.py udbsync

systemctl enable --now udbsync
systemctl reload nginx

2.2. Step 1: setting up the core services: MDB, DNS, DHCP 17

Prologin System Administration, Release 2020

We can then configure udbsync clients:

python install.py udbsync_django udbsync_rootssh
systemctl enable --now udbsync_django@mdb
systemctl enable --now udbsync_django@udb
systemctl enable --now udbsync_rootssh

Note: Adding all the users to the sqlite databases is slow will lock them. You will have to wait a bit for mdb and udb
to sync their user databases.

2.2.15 presencesync

presencesync manages the list of logged users. It authorizes user logins and maintain the list of logged users using
pings from the presenced daemon running in the NFS exported systems.
Once again:

python install.py presencesync

systemctl enable --now presencesync
systemctl reload nginx

2.2.16 presencesync_sso

This listens to both presencesync and mdb updates and maintains a double mapping ip addr → machine
hostname → logged-in username. This provides a way of knowing which user is logged on what machine by
its IP address. This is used by nginx SSO to translate request IPs to logged-in username.
We expose an HTTP endpoint on gw nginx at http://sso/. Install the daemon and nginx config with:

python install.py presencesync_sso

systemctl enable --now presencesync_sso
systemctl reload nginx

All services that support SSO should already have the proper stubs in their respective nginx config. See the comments in
etc/nginx/sso/{handler,protect} for how to use these stubs in new HTTP endpoints.

Debugging SSO

Typical symptoms of an incorrect SSO setup are:
• you’re not automatically logged-in on SSO-enabled websites such as http://udb or http://concours
• nginx logs show entries mentioning __sso_auth or something about not being able to connect to some sso
upstream

Your best chance at debugging this is to check the reply headers in your browser inspection tool.
• if there is not any of the headers described below, it means your service is not SSO-enabled, ie. doesn’t contain the
stubs mentioned above. Fix that.

• X-SSO-Backend-Status should be working, otherwise it means nginx cannot reach the SSO endpoint; in
that case check that presencesync_sso works and http://sso is reachable.

18 Chapter 2. Setup instructions

http://sso/
http://udb
http://concours
http://sso

Prologin System Administration, Release 2020

• X-SSO-Status should be authenticated and X-SSO-User should be filled-in; if the website is not in a
logged-in state, it means SSO is working but the website does not understand, or doesn’t correctly handle the SSO
headers. Maybe it is configured to get the user from a different header eg. Remote-User? Fix the website.

• if X-SSO-Status is missing header, it means nginx is not sending the real IP address making the request;
are you missing include sso/handler?

• if X-SSO-Status is unknown IP, it means presencesync_sso couldn’t resolve the machine hostname
from its IP; check the IP exists in http://mdb and that presencesync_sso is receiving mdb updates.

• if X-SSO-Status is logged-out machine, it means presencesync_sso believes no one is logged-in
the machine from which you do the requests; check that presencesync knows about the session (eg. using
http://map/) and that presencesync_sso is receiving presencesync updates.

2.2.17 iptables

Note: If the upstream of gw is on a separate NIC you should replace etc/iptables.save with etc/
iptables_upstream_nic.save

The name of the interface is hardcoded in the iptables configuration, you must edit it to match your setup:

$EDITOR etc/iptables.save

Setup the iptables rules and ipset creation for users allowed internet acces:

python install.py firewall
systemctl enable --now firewall

And the service that updates these rules:

python install.py presencesync_firewall
systemctl enable --now presencesync_firewall

2.3 Step 2: file storage

rhfs naming scheme

A rhfs has two NICs and is connected to two switches, there is therefore two hfs-server running on one rhfs
machine, each with a different id. The hostname of the rhfs that hosts hfs 0 and hfs 1 will be: rhfs01.

A RHFS, for “root/home file server”, has the following specifications:
• It is connected to two switches, handling two separates L2 segments. As such, the machine on a L2 segment is
only 1 switch away from it RHFS. This is a good thing as it reduces the network latency, reduces the risk if one the
switches in the room fails and simplyfies debugging network issues. It also mean that a RHFS will be physically
near the machines it handles, pretty useful for debugging, although you will mostly work using SSH.

• Two NICs configured using DHCP, each of them connected to a different switch.
• Two disks in RAID1 setup, same as gw.

To bootstrap a rhfs, rhfs01 for example, follow this procedure:

2.3. Step 2: file storage 19

http://mdb
http://map/

Prologin System Administration, Release 2020

1. Boot the machine using PXE and register it into mdb as rhfs01.
2. Go to mdb/ and add aliases for the NIC you just registered: rhfs,rhfs0,hfs0,rfs0. Also add another

machine : rhfs1 with the MAC address of the second NIC in the rhfs, it shoud have the following aliases:
hfs1,rfs1.

3. Reboot the machine and boot an Arch Linux install medium.
4. Follow the same first setup step as for gw: see Basic system: file system setup.

2.3.1 Registering the switches

To be able to register the machines easily, we can register all the switches in MDB. By using the LLDP protocol, when
registering the machines, they will be able to see which switch they are linked to and automatically guess the matching
RHFS server.
On each rhfs, run the following command:

networkctl lldp

You should see an LLDP table like this:

LINK CHASSIS ID SYSTEM NAME CAPS PORT ID PORT␣
↪→DESCRIPTION
rhfs0 68:b5:99:9f:45:40 sw-kb-past-2 ..b........ 12 12
rhfs1 c0:91:34:c3:02:00 sw-kb-pas-3 ..b........ 22 22

This means the “rhfs0” interface of rhfs01 is linked to a switch named sw-kb-past-2 with a Chassis ID of
68:b5:99:9f:45:40.
After running this on all the rhfs, you should be able to establish a mapping like this:

rhfs0 -> sw-kb-past-2 (68:b5:99:9f:45:40)
rhfs1 -> sw-kb-pas-3 (c0:91:34:c3:02:00)
rhfs2 -> sw-kb-pas-4 (00:16:b9:c5:25:60)
rhfs3 -> sw-pas-5 (00:16:b9:c5:84:e0)
rhfs4 -> sw-kb-pas-6 (00:14:38:67:f7:e0)
rhfs5 -> sw-kb-pas-7 (00:1b:3f:5b:8c:a0)

You can register all those switches [in MDB](http://mdb/mdb/switch/). Click on “add switch”, with the name of the
switch like sw-kb-past-2, the chassis ID like 68:b5:99:9f:45:40, and put the number of the interface in the
RFS and HFS field (i.e if it’s on the interface rhfs0, put 0 in both fields).

2.4 Step 3: booting the user machines

Note: if you are good at typing on two keyboards at once, or you have a spare root doing nothing, this step can be done
in parallel with step 4.

20 Chapter 2. Setup instructions

http://mdb/mdb/switch/

Prologin System Administration, Release 2020

2.4.1 Installing the RHFS

The basic install process is already documented through the ArchLinux Diskless Installation. For conveniance, use:

Setup the rhfs server, install the exported rootfs
(cd ./install_scripts; ./setup_rfs.sh)
Setup the exported rootfs
python install.py rfs_nfs_archlinux

Configure the exported rootfs for SADM and network booting. This scripts will chroot into the exported file system and
run the setup_sadm.sh script.

python install.py rfs_nfs_sadm

The installation script will bootstrap a basic Arch Linux system in /export/nfsroot_staging using the common
Arch Linux install script you already used for bootstraping gw and rhfs. It also adds a prologin hook that creates tmpfs
at /var/{log,tmp,spool/mail}, installs libprologin and enables some sadm services.
We can now finish the basic RFS setup and export the NFS:

python install.py rfs
Enable the services we just installed:
for svc in {udbsync_passwd{,_nfsroot},udbsync_rootssh,rpcbind,nfs-server}.service␣
↪→rootssh.path; do
echo "[-] Enable $svc"
systemctl enable --now "$svc"

done

Once done, we need to copy the the kernel and initramfs from rhfs to gw, where they will be fetched by the machines
during PXE. We also need to copy nfsroot_staging to the rfs{0,2,4,6}:/export/nfsroot_ro.
To do so, run on rhfs01:

rfs/commit_staging.sh rhfs01 rhfs23 rhfs45 rhfs67

At this point the machines should boot and drop you to a login shell. We can now start to install a basic graphical session,
with nice fonts and graphics:

python install.py rfs_nfs_packages_base

You can reboot a machine and it should display a graphical login manager. You still need to install the hfs to login as a
user.
If you want a full RFS install, with all the code editors you can think of and awesome games, install the extra package list:

python install.py rfs_nfs_packages_extra

To install a new package:

pacman --root /export/nfsroot_staging -Sy package
deploy the newly created root to rhfs{0,2,4,6}:/export/nfsroot_ro
/root/sadm/rsync_rfs.sh rfs0 rfs2 rfs4 rfs6

Note: Never use arch-chroot or systemd-nspawn on a live NFS export. This will bind the runtime server directories,
which will be picked up by the NFS clients resulting in great and glorious system failures.

TODO: How to sync, hook to generate /var…

2.4. Step 3: booting the user machines 21

https://wiki.archlinux.org/index.php/Diskless_network_boot_NFS_root#Bootstrapping_installation

Prologin System Administration, Release 2020

2.4.2 Setting up hfs

On gw, install the hfs database:

python install.py hfsdb

2.4.3 Start the hfs

On every rhfs machine, install the hfs server:

python install.py hfs
Change HFS_ID to what you need
systemctl enable --now hfs@HFS_ID

Then, setup the skeleton of a user home:

cp -r STECHEC_BUILD_DIR/home_env /export/skeleton

Test procedure:
1. Boot a user machine
2. Log using a test account (create one if needed), a hfs should be created with the skeleton in it.
3. The desktop launches, the user can edit files and start programs
4. Close the session
5. Boot a user machine using an other hfs
6. Log using the same test account, the hfs should be be migrated.
7. The same desktop launches with modifications.

2.4.4 Forwarding of authorized_keys

On a rhfs, the service udbsync_rootssh (aka. udbsync_clients.rootssh) writes the ssh public keys of
roots to /root/.ssh/authorized_keys. The unit rootssh.path watches this file, and on change starts the
service rootssh-copy that updates the authorized_keys in the /exports/nfsroot_ro.

2.5 Step 4: Concours

2.5.1 Setup web

The web services will usually be set up on a separate machine from the gw, for availability and performance reasons (all
services on gw are critical, so you wouldn’t want to mount a NFS on it for example). This machine is named web.prolo.
Once again, register a server on mdb and set up a standard Arch system. Add the following alliases in mdb:

db,concours,wiki,bugs,redmine,docs,home,paste,map,masternode

You will want to ssh at this machine, so enable udbync_rootssh:

python install.py udbsync_rootssh
systemctl enable --now udbsync_rootssh

22 Chapter 2. Setup instructions

Prologin System Administration, Release 2020

Then install another nginx instance:

pacman -S nginx

Then, install the nginx configuration from the repository:

python install.py nginxcfg
mv /etc/nginx/nginx.conf{.new,}
systemctl enable --now nginx

2.5.2 Setup PostgreSQL on web

Install and enable PostgreSQL:

python install.py postgresql
systemctl enable --now postgresql

2.5.3 concours

Note: Concours is a contest service. It won’t be enabled by default. See Enable contest services.

Run the following commands:

python install.py concours
systemctl enable --now concours
systemctl enable --now udbsync_django@concours
systemctl reload nginx

You can verify that concours is working by visiting http://concours

2.6 Step 5: Setting up masternode and workernode

On masternode (usually, web):

python install.py masternode
systemctl enable --now masternode

workernodemust be running on all the users machine, to do that we install it in the NFS export. The required packages
are stechec and stechec2-makefiles. We will intall them using the prologin Arch Linux repository:

pacman -S prologin/stechec2 prologin/stechec2-makefiles -r /export/nfsroot_staging

Note: The rfs setup script (setup_nfs_export.sh, ran by install.py rfs_nfs_sadm) already ran the
following commands, we still list them for reference.

Then, still for the users machines, install workernode:

2.6. Step 5: Setting up masternode and workernode 23

http://concours

Prologin System Administration, Release 2020

systemd-nspawn -D /export/nfsroot_staging/
cd sadm
python install.py workernode
systemctl enable workernode
exit # get out of the chroot

You may now reboot a user machine and check that the service is started (systemctl status workernode.
service) and that the worker is registered to the master.
You should now be able to upload matches to concours/ (you have to enable it see , see Enable contest services), see
them dispatched by masternode to workernode s and get the result.

2.7 Step 6: Switching to contest mode

Contest mode is the set of switches to block internet access to the users and give them access to the contest ressources.

2.7.1 Block internet access

Edit /etc/prologin/presencesync_firewall.yml and remove the user group, the restart pres-
encesync_firewall.

2.7.2 Enable contest services

By default, most of the web services are hidden from the contestants. In order to show them, you must activate the “contest
mode” in some service.
Edit /etc/nginx/nginx.conf, uncomment the following line:

include services_contest/*.nginx;

2.8 Common tasks

2.8.1 Enable Single Sign-On

By default, SSO is disabled as it requires other dependencies to be up and running.
Edit /etc/nginx/nginx.conf, uncomment the following lines:

lua_package_path '/etc/nginx/sso/?.lua;;';
init_by_lua_file sso/init.lua;
access_by_lua_file sso/access.lua;

24 Chapter 2. Setup instructions

Prologin System Administration, Release 2020

2.8.2 Customize the wallpaper

To customize the desktop wallpaper, create a PNG file at the following location and commit the changes:

/export/nfsroot_staging/opt/prologin/wallpaper.png

The following DE are setup to use this file:
• i3
• awesome
• Plasma (aka. KDE)
• XFCE

Gnome-shell is still to be done.

2.8.3 Customize the SDDM logo

To customize the SDDM logo, replace the SVG file at the following location and commit the changes:

/export/nfsroot_staging/usr/share/sddm/themes/prologin/prologin-logo.svg

2.8. Common tasks 25

Prologin System Administration, Release 2020

26 Chapter 2. Setup instructions

CHAPTER

THREE

MISC SERVICES

3.1 /sgoinfre

Setup a rw nfs export on a misc machine, performance or reliabiliy is not a priority for this service.
Install nfs-utils on misc.
Add the following line to /etc/exports:

/sgoinfre *(rw,insecure,squash_all,no_subtree_check,nohide)

Run the following commands on misc:

exportfs -arv
systemctl enable --now nfs-server

The following systemd service can be installed on the rhfs (in nfsroot):

/etc/systemd/system/sgoinfre.mount
[Unit]
After=network-online.target

[Mount]
What=sgoinfre:/sgoinfre
Where=/sgoinfre
Options=nfsvers=4,nolock,noatime

[Install]
WantedBy=multi-user.target

Then enable the unit:

systemctl enable --now sgoinfre.mount

27

Prologin System Administration, Release 2020

3.2 doc

Setup:

python install.py docs
systemctl reload nginx

You have to retrieve the documentations of each language:

pacman -S wget unzip
su webservices - # So that the files have the right owner
cd /var/prologin/docs/languages
./get_docs.sh

You can now test the docs:
• Open http://docs/languages/
• Click on each language, you should see their documentation.

3.3 paste

We will setup dpaste: https://github.com/bartTC/dpaste:

pip install dpaste
python install.py paste

systemctl enable paste && systemctl start paste
systemctl reload nginx

3.4 Redmine

First, export some useful variables. Change them if needed:

export PHOME=/var/prologin
export PGHOST=web # postgres host
export RUBYV=2.2.1
export RAILS_ENV=production
export REDMINE_LANG=fr
read -esp "Enter redmine db password (no ' please): " RMPSWD

Download and extract Redmine:

cd /tmp
wget http://www.redmine.org/releases/redmine-3.0.1.tar.gz
tar -xvz -C $PHOME -f redmine*.tar.gz
mv $PHOME/{redmine*,redmine}

Using RVM, let’s install dependencies:

Trust RVM keys
curl -sSL https://rvm.io/mpapis.asc | gpg2 --import -
curl -sSL https://get.rvm.io | bash -s stable

(continues on next page)

28 Chapter 3. Misc services

https://github.com/bartTC/dpaste

Prologin System Administration, Release 2020

(continued from previous page)
source /etc/profile.d/rvm.sh
echo "gem: --no-document" >>$HOME/.gemrc
rvm install $RUBYV # can be rather long
rvm alias create redmine $RUBYV
gem install bundler unicorn

Create the Redmine user and database:

sed -e s/DEFAULT_PASSWORD/$RMPSWD/ /root/sadm/sql/redmine.sql | su - postgres -c psql

Configure the Redmine database:

cat >$PHOME/redmine/config/database.yml <<EOF
prologin redmine database
production:

adapter: postgresql
database: redmine
host: $PGHOST
username: redmine
password: $RMPSWD
encoding: utf8

EOF

We can now install Redmine:

cd $PHOME/redmine
bundle install --without development test rmagick

Some fixtures (these commands require the above env vars):

bundle exec rake generate_secret_token
bundle exec rake db:migrate
bundle exec rake redmine:load_default_data

Create some dirs and fix permissions:

mkdir -p $PHOME/redmine/{tmp,tmp/pdf,public/plugin_assets}
chown -R redmine:http $PHOME/redmine
chmod -R o-rwx $PHOME/redmine
chmod -R 755 $PHOME/redmine/{files,log,tmp,public/plugin_assets}

Install the SSO plugin:

(cd $PHOME/redmine/plugins && git clone https://github.com/prologin/redmine-sso-auth.
↪→git)

Now it’s time to install Redmine system configuration files. Ensure you are within the prologin virtualenv (source
/opt/prologin/venv/bin/activate), then:

cd /root/sadm
python install.py redmine udbsync_redmine

Register the new plugins (SSO, IRC hook):

(cd $PHOME/redmine && exec rake redmine:plugins:migrate)
Should display:

(continues on next page)

3.4. Redmine 29

Prologin System Administration, Release 2020

(continued from previous page)
Migrating issues_json_socket_send (Redmine issues to socket JSON serialized)...
Migrating redmine_sso_auth (SSO authentication plugin)...

Enable and start the services:

systemctl enable redmine && systemctl start redmine
systemctl enable udbsync_redmine && systemctl start udbsync_redmine
systemctl reload nginx

You should be able to access the brand new Redmine. There are some important configuration settings to change:
• Login at http://redmine/login with admin / admin
• Change password at http://redmine/my/password
• In http://redmine/settings?tab=authentication - Enable enforced authentication. - Set minimum password length
to 0. - Disable lost password feature, account deletion and registration.

• In http://redmine/settings/plugin/redmine_sso_auth - Enable SSO. - If not already done, set environment variable
to HTTP_X_SSO_USER. - Set search method to username.

• Configure a new project at http://redmine/projects/new The Identifiant has to be ``prologin`` in order to
vhosts to work.

• As soon as udbsync_redmine has finished its first sync, you should find the three groups (user, orga, root)
at http://redmine/groups so you can give them special priviledges: click one, click the “Projets” tab, assign your
“prologin” project to one of the roles. For instance: user → ∅, orga → developer, root → {manager, developer}

3.5 Homepage

The homepage links to all our web services. It is a simple Django app that allows adding links easily. Setup it using
install.py:

python install.py homepage
systemctl enable homepage && systemctl start homepage
systemctl enable udbsync_django@homepage && systemctl start udbsync_django@homepage

You can then add links to the homepage by going to http://homepage/admin.

3.6 DJ-Ango

See dj_ango README: https://bitbucket.org/Zeletochoy/dj-ango/

30 Chapter 3. Misc services

http://redmine/login
http://redmine/my/password
http://redmine/settings?tab=authentication
http://redmine/settings/plugin/redmine_sso_auth
http://redmine/projects/new
http://redmine/groups
http://homepage/admin
https://bitbucket.org/Zeletochoy/dj-ango/

Prologin System Administration, Release 2020

3.7 IRC

Install the ircd, then install the config:

pacman -S unrealircd
python install.py ircd
mv /etc/unrealircd/unrealircd.conf{.new,}

Change the OPER password in the config:

vim /etc/unrealircd/unrealircd.conf

Then enable and start the IRCd:

systemctl enable --now unrealircd

Now you need to enable the SOCKS tunnel so that IRC is available from the outside. First, generate a ssh key in misc,
and add it to an user of the public-facing server (e.g prologin.org):

ssh-keygen -t ed25519 -q -N "" < /dev/zero
ssh-copy-id dev@prologin.org

Then, enable and start the IRC gatessh:

systemctl enable --now irc_gatessh

3.7.1 IRC issues bot

Once both IRC and Redmine are installed, you can also install the IRC bot that warns about new issues:

python install.py irc_redmine_issues
systemctl enable --now irc_redmine_issues

3.7. IRC 31

Prologin System Administration, Release 2020

32 Chapter 3. Misc services

CHAPTER

FOUR

MONITORING

Monitoring is the art of knowning when something fails, and getting as much information as possible to solve the issue.
We use prometheus as our metrics monitoring backend and grafana for the dashboards. We use elasticsearch to store logs
and kibana to search through them.
We will use a separate machine for monitoring as we want to isolate it from the core services, because we don’t want the
monitoring workload to impact other services, and vice versa. The system is installed with the same base Arch Linux
configuration as the other servers.

4.1 Setup

To make a good monitoring system, mix the following ingredients, in that order:
1. bootstrap_arch_linux.sh
2. setup_monitoring.sh
3. python install.py prometheus

4. systemctl enable --now prometheus

5. python install.py grafana

6. systemctl enable --now grafana

4.2 Monitoring services

Most SADM services come with built-in monitoring and should be monitored as soon as prometheus is started.
The following endpoints are availables:

• http://udb/metrics

• http://mdb/metrics

• http://concours/metrics

• http://masternode:9021

• http://presencesync:9030

• hfs: each hfs exports its metrics on http://hfsx:9030
• workernode: each workernode exports its metrics on http://MACHINE:9020.

33

http://prometheus.io/
https://grafana.com/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana

Prologin System Administration, Release 2020

4.3 Grafana configuration

In a nutshell:
1. Install the grafana package.
2. Copy the SADM configuration file: etc/grafana/grafana.ini.
3. Enable and start the grafana service
4. Copy the nginx configuration: etc/nginx/services/grafana.nginx
5. Open http://grafana/, login and import the SADM dashboards from etc/grafana.

Todo: automate the process above

4.4 Monitoring screen how-to

Start multiple chromium --app http://grafana/ to open a monitoring web view.
We look at both the System and Masternode dashboards from grafana.
Disable the screen saver and DPMS using on the monitoring display using:

$ xset -dpms
$ xset s off

4.5 Log monitoring

On monitoring:

$ pacman -S elasticsearch kibana
$ systemctl enable --now elasticsearch kibana

In the kibana web UI, go to the dev tools tab and run:

Make sure the index isn't there
DELETE /logs

Create the index
PUT /logs

PUT logs/_mapping
{

"properties": {
"REALTIME_TIMESTAMP": {

"type": "date",
"format": "epoch_millis"

}
}

}

34 Chapter 4. Monitoring

http://grafana/

Prologin System Administration, Release 2020

It creates an index called logs, as well as proper metadata for time filtering.
Install https://github.com/multun/journal-upload-aggregator on the monitoring server, and please do not configure nginx
as a front-end on journal-aggregator. Don’t forget to add the alias in mdb.
On the machines that need to be monitored, create /etc/systemd/journal-upload.conf:

[Upload]
Url=http://journal-aggregator:20200/gateway

If still not fixed, also create /etc/systemd/system/systemd-journal-upload.service.d/
restart.conf:

[Service]
Restart=on-failure
RestartSec=4

Then:

$ systemctl enable --now systemd-journal-upload

As an useful first request:

not SYSTEMD_USER_SLICE:* and (error or (PRIORITY < 5) or (EXIT_STATUS:* and not EXIT_
↪→STATUS:0))

This request filters non-user errors.

4.5. Log monitoring 35

https://github.com/multun/journal-upload-aggregator

Prologin System Administration, Release 2020

36 Chapter 4. Monitoring

CHAPTER

FIVE

ARCH LINUX REPOSITORY

Prologin has setup an Arch Linux package repository to ease of use of custom packages and AUR content.

5.1 Usage

Add the following section to the /etc/pacman.conf file:

[prologin]
Server = https://repo.prologin.org/

Then, trust the repository signing keys:

$ wget https://repo.prologin.org/prologin.pub
$ pacman-key --add prologin.pub
$ pacman-key --lsign-key prologin

Finally, test the repository:

$ pacman -Sy

You should see “prologin” in the list of synchronized package databases.

5.2 SADM related packages

Some packages are key parts of the SADM architecture. They should always be the lastest revision possible. The packages
we maintain are in the pkg folder.

5.3 Uploading packages

Only the owner of the repository’s private key and ssh access to repo@prologin.org can upload packages.
To import the private key to your keystore:

$ ssh repo@prologin.org 'gpg --export-secret-keys --armor␣
↪→F4592F5F00D9EA8279AE25190312438E8809C743' | gpg --import
$ gpg --edit-key F4592F5F00D9EA8279AE25190312438E8809C743

37

mailto:repo@prologin.org

Prologin System Administration, Release 2020

Trust fully the key.
Then, build the package you want to upload locally using makepkg. Once the package is built, use pkg/
upload2repo.sh to sign it, update the database and upload it.
Example usage:

$ cd quake3-pak0.pk3
$ makepkg
$ ~/rosa-sadm/pkg/upload2repo.sh quake3-pak0.pk3-1-1-x86_64.pkg.tar.xz

You can then install the package like any other:

pacman -Sy quake3-pak0.pk3
$ quake3

Enjoy!

5.4 More information

The repository content is stored inrosa:~repo/www. Use your Prologin SADMcredentials when asked for a password
or a passphrase.

5.5 Troubleshooting

5.5.1 Invalid signature of a database or a package

This should not happen. If it does, find the broken signature and re-sign the file using gpg --sign. You must also
investigate why an invalid signature was generated.

38 Chapter 5. Arch Linux repository

CHAPTER

SIX

COOKBOOK

All the things you might need to do as an organizer or a root are documented here.

6.1 Server setup

Here is a list of things to remember when setting up servers:
• Use ssh as soon as possible.
• Work in a tmux session, this allows any other root to take over your work if needed.
• Use only one user and one shell (bash) and setup an infinite history. This, http://stackoverflow.com/a/19533853 is
already installed by the rfs scripts. Doing that will document what you and the other admins are doing during the
contest.

6.2 Testing on qemu/libvirt

Here are some notes:
• Do not use the spice graphical console for setting up servers, use the serial line. For syslinux it is serial 0 at the
top of syslinux.cfg and for Linux console=ttyS0 on the cmd line of the kernel in syslinux.cfg.

• For best performance use the VirtIO devices (disk, NIC), this should already be configured if you used virt-
install to create the machine.

• For user machines, use the QXL driver for best performance with SPICE.

6.3 User related operations

Most of the operations are made very simple with the use of udb. If you are an organizer, you can access udb in read
only mode. If you are a root, you obviously have write access too.
udb displays the information (including passwords) of every contestant to organizers. Organizers can’t see the information
of other organizers or roots.
All services should be using udb for authentication. Synchronization might take up to 5 minutes (usually only one minute)
if anything is changed.
Giving back his password to a contestant First of all, make sure to ask the contestant for his badge, which he should

always have on him. Use the name from the badge to look up the user in the udb. The password should be visible
there.

39

http://stackoverflow.com/a/19533853

Prologin System Administration, Release 2020

Adding an organizer Root only. Go to udb and add a user with type orga.
Send an announce Connect to the IRC server, join the #notify channel, and send a message formatted like this:

!announce <expiration-delay> <message>

Example:

!announce 12 The lunch is ready!

Will create an announce which will stay for 12 minutes on the users’s desktops. Note that the delay will default to
2 when not specified:

!announce No milk today :(

6.4 Machine registration

mdb contains the information of all machines on the contest LANs. If a machine is not in mdb, it is considered an alien
and won’t be able to access the network.
All of these operations are root only. Organizers can’t access the mdb administration interface.
Adding a user machine to the network In the mdb configuration, authorize self registration by adding a VolatileSet-

ting allow_self_registration to true. Netboot the user machine - it should ask for registration de-
tails. After the details have been entered, the machine should reboot to the user environment. Disable al-
low_self_registration when you’re done.

Adding a machine we don’t manage to the user network Some organizers may want to use their laptop. Ask them
for their MAC address and the hostname they want. Finally, insert a mdb machine record with machine type
orga using the IP address you manually allocated (if you set the last allocation to 100, you should assign the IP
.100). Wait a minute for the DHCP configuration to be synced, and connect the laptop to the network.

6.5 Network FS related operations

Two kind of network file systems are used during the finals, the first one is the Root File System: RFS, the second is the
Home File System: HFS. The current setup is that a server is both a RFS and a HFS node.
The RFS is a read-only NFS mounted as a rootnfs in Linux. It is replicated over multiple servers to ensure minimum
latency over the network.
The HFS is a read-write, exclusive, user-specific export of their home. In other words, each user has it’s own personal
space that can only be mounted once at a time. The HFS exports are sharded over multiple servers.

6.5.1 Resetting the hfs

If you need to delete every /home created by the hfs, simply delete all nbd files in /export/hfs/ on all HFS servers
and delete entries in the user_location table of the hfs’ database:

For each hfs instance
rm /export/hfs/*.nbd

echo 'delete from user_location;' | su - postgres -c 'psql hfs'

40 Chapter 6. Cookbook

Prologin System Administration, Release 2020

6.5.2 Remove a RAID 1

The first step is to deactivate and remove the volume group:

vgchange -a n data
vgremove data

Then you have to actually deconstruct the RAID array and zero the superblock of each device:

mdadm --stop /dev/md0
mdadm --remove /dev/md0
mdadm --zero-superblock /dev/sda2
mdadm --zero-superblock /dev/sdb2

If you want to erase the remaining ext4 filesystem on thoses devices, you can use fdisk.

6.5. Network FS related operations 41

Prologin System Administration, Release 2020

42 Chapter 6. Cookbook

CHAPTER

SEVEN

RUNNING THE WEBSITES WITHOUT A COMPLETE SADM SETUP

When hacking on the various web services included in SADM, it is not necessary to setup a full-blown SADM infras-
tructure. Typically, when making the design of concours website for a new edition, only a small Django setup has to
be completed.

1. Clone SADM and cd into it:

git clone https://github.com/prologin/sadm
cd sadm

2. Configure the website:

for the 'concours' site
vim etc/prologin/concours.yml

Refer below for a guide of values to adapt depending on the website being worked on.
3. Create a venv (don’t activate it yet):

python -m venv .venv

4. Add the configuration path to .venv/bin/activate so it is automatically set up when you activate the venv:

echo "export CFG_DIR='$PWD/etc/prologin'" >> .venv/bin/activate

5. Activate the venv, install the requirements:

source .venv/bin/activate
pip install -r requirements.txt -e .

6. Apply the migrations, create a super-user and run:

for the 'concours' site
cd django/concours
python manage.py migrate
python manage.py createsuperuser --username prologin --email x@prologin.org
fill in the password;
python manage.py runserver

Go to http://localhost:8000/, use prologin and the password you just chose to log in.

43

http://localhost:8000/

Prologin System Administration, Release 2020

7.1 Working on concours

7.1.1 Configuration

Customize etc/prologin/concours.yml with the following:
db.default The easiest way is to use SQLite:

ENGINE: django.db.backends.sqlite3
NAME: concours.sqlite

contest.game Use the correct year, typically prologin2018 for the 2018 edition.
contest.directory Use a writable directory, eg. /tmp/prologin/concours_shared.
website.static_path Put the absolute path to prologin<year>/www/static or whatever directory is

used for this edition.
Other contest entries (eg. use_maps) Adapt to the correct settings for this edition.

7.1.2 Importing a stechec2 dump for testing

When developing the Javascript replay and other features, you might need to import test dumps that can be loaded on the
website.
While in the correct virtualenv:

cd django/concours
python manage.py import_dump /path/to/my/dump.json

This will create a dummy match with zero players and no map, that will successfully load on the dedicated URL. The
match detail URL output by this command will only work in the default setup where manage.py runserver is used
on localhost:8000. Adapt the host/port if needed.

44 Chapter 7. Running the websites without a complete SADM setup

CHAPTER

EIGHT

CONTAINER SETUP FOR SADM

This page explains how to run and test the Prologin SADM infrastruction using containers.

Note: TL;DR run container_setup_host.sh then container_setup_gw.sh from
install_scripts/containers/

8.1 Why containers?

Containers are lightweight isolation mechanisms. You can think of them as “starting a new userland on the same kernel”,
contrarily to virtual machines, where you “start a whole new system”. You may know them from tools such as docker,
kubernetes or rkt. In this guide we will use system-nspawn(1), which you may already have installed if you are using
systemd. Its main advantages compared to other container managers are:

• Its simplicity. It does one thing well: configuring namespaces, the core of containers. No configuration file, daemon
(other than systemd), managed filesystem or hidden network configuration. Everything is on the command line and
all the options are in the man page.

• Its integrated with the systemd ecosystem. A container started with systemd-nspawn is registered and man-
agable with machinectl(1) <https://www.freedesktop.org/software/systemd/man/machinectl.html>. You can use the
-M of many systemd utilities (e.g. systemctl, journalctl) to control it.

• Its feature set. You can configure the filesystem mapping, network interfaces, resources limits and security prop-
erties you want. Just look at the man page to see the options.

Containers compare favorably to virtual machines on the following points:
• Startup speed. The containers share the devices of the host, these are already initialised and running therefore the
boot time is reduced.

• Memory and CPU resources usage. No hypervisor and extra kernel overhead.
• Storage. The content of the container is stored in your existing file system and is actually completely editable from
outside of the container. It’s very useful for inspecting what’s going on.

• Configuration. For system-nspawn, the only configuration you’ll have is the command line.

45

https://www.docker.com
https://kubernetes.io
https://github.com/coreos/rkt
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html

Prologin System Administration, Release 2020

8.2 Overview

This guides starts by discussing the virtual network setup, then we build and start the systems.

8.3 Networkd in your base system

The container setup requires systemd-networkd to be running on your system. That said, you might not want it to be
managing your main network interfaces.
If you want to tell systemd-networkd to not manage your other interfaces, you can run this command:

cat >/etc/systemd/network/00-ignore-all.network <<EOF
[Match]
Name=!vz*

[Link]
Unmanaged=yes
EOF

8.4 Automated container setup

If you want to setup SADM in containers to test something else than the install procedure, you can use the automated
container install scripts. They will create and manage the containers for you and perform a full SADM install as you
would do manually. They are intended for automated and end-to-end tests of SADM.
Requirements:

• The host system should be Arch Linux. Experimental support has been added for non Arch Linux hosts (CoreOS)
and will be used if the script detects you are not running Arch.

• For convenience, /var/lib/machines should be a btrfs volume. The scripts will run without that but you
will not have the ability to restore intermediate snapshots of the install. Note that if you don’t want to use a btrfs
volume you can use:

echo 'USE_BTRFS=false' > install_scripts/containers/container_setup.conf

To start, run the host setup script, you are strongly advised to check its content beforehand, as it does some substantial
changes to your system setup:

cd install_scripts/containers/
./container_setup_host.sh

Then, run the container install scripts:

./container_setup_gw.sh

./container_setup_rhfs.sh

./container_setup_web.sh

./container_setup_pas-r11p11.sh

That’s it!
You should be able to see the containers listed by machinectl, and you can get a shell on the system using ma-
chinectl shell CONTAINER_NAME.

46 Chapter 8. Container setup for SADM

Prologin System Administration, Release 2020

8.5 What do the scripts do?

They automate setups of Arch Linux and SADM components in containers. The commands in the scripts are taken from
the main setup documentation. We expect the container setup to follow the manual setup as strictly as possible.

8.6 BTRFS snapshots

Each stage of the system setups we are building can take a substantial amount of time to complete. To iterate faster we
user file system snapshots at each stage so that the system can be rollback the stage just before what you want to test or
debug.
Each stage_* shell function ends by a call to container_snapshot $FUNCNAME.

8.7 Cleaning up

If you want to clean up what these scripts did, you must stop the currently running containers. List the containers with
machinectl list and machinectl kill all of them. You can then remove the containers’ data by deleting the
content of /var/lib/machines. List bind-mounted directories: findmnt | grep /var/lib/machines/
and umount them. Then delete the BTRFS snapshots. List them using btrfs subvolume list . and delete
them using btrfs subvolume delete.

8.8 Containers deep dive

As mentioned above, these scripts setup containers using machinectl. It’s not necessary to understand how the con-
tainers work to test features in prologin-sadm, but you may encounter weird bugs caused by them. The following sections
discuss some internals of the containers setup.
A key design decision is that the container setup should not require special cases added to the normal setup. This is to
avoid bloating the code and keep it as simple as possible. The container setup can highlight potential fixes, for example
how to make the setup more generic or how to decouple the services from the underlying system or network setup.
We note that containers do require special configuration. It should be applied in the container scripts themselves.

8.9 Virtual network setup

The first step consists in creating a virtual network. Doing it with containers is not that different compared to using virtual
machines. We can still use bridge type interfaces to wire all the systems together, but we also have new possibilities, as
the container is running on the same kernel as the host system.
One interesting thing is that we will be able to start one system as a container, let say gw.prolo, and others as virtual
machines, for example the contestant systems, to test network boot for example.
We will use a bridge interface, the next problem to solve is to give this interface an uplink: a way to forward packets to
the internet, and back again. To do that, we have multiple choices, here are two:

• Masquerade (“NAT”) the vz-prolo bridge type interface behind your uplink. With this technique the packets
arriving on vz-prolo will be rewritten, tracked and moved to your uplink to be routed as if they originated from
it. The machines behind the NAT will not be accessible directly and you will have to setup port forwarding to
access them from outside your system. From within your system they will be accessible directly using their local IP

8.5. What do the scripts do? 47

Prologin System Administration, Release 2020

address. In this guide we will use the “zone” network type of systemd-nspawn and systemd-networkd
as the main system network manager. systemd-networkd will manage the NAT in iptables for us. Be careful,
if you shadowed the 80-container-vz.network rule with a catch-all (Name=*) .network configuration
files, the NAT will not be created.

• Bridge your uplink interface with vz-prolo. This will have the bad effect to link your LAN, which is most likely
already using your router DHCP server, to SADM network, which has its own DHCP server. Depending on various
parameters your machine and those on your LAN might get IPs and DNS configuration from Prologin SADM. Be
careful if you choose this option, as bridging your uplink will down the interface, vz-prolo will get an IP from
your DHCP server if you use one and you may have to clean your routes to remove the old ones. It is still the fastest
to setup, especially if you just want to give internet to a container. Note: as of 2016, some wireless drivers such as
broadcom’s wl do not support bridging 802.11 interfaces.

The NAT setup is simpler and more flexible, that’s what we will use.
All the containers will be connected to their own L2 network using a bridge interface. This interface is managed by
systemd, created when the first container using it is spawned. Here is a small diagram to explain how we want the network
to look like:

/---------\
| WAN |
\---------/

|
| < NAT
|

+--+
| bridge: vz-prolo |
+-+===========+----+============+------+===========+-+
| if: vb-gw | | if: vb-web | | if: vnet0 |
+-----------+ +------------+ +-----------+

| | |
| < veth | < veth | < VM interface
| | |

+-------+ +-------+ +------+
| host0 | | host0 | | ens3 |

o--+=======+----o o--+=======+-----o o--+======+--o
| container: gw | | container: web | | VM: r00p01 |
o---------------o o----------------o o------------o

Veth type interfaces what we will use) linked to a bridge will have the name host0. systemd-networkd provides
a default configuration (80-container-host0.network) file that enable DHCP on them. With the NAT rule
managed by systemd-networkd and that, the internet will be accessible out-of-the-box in the containers. The only
remaining configuration to do being the DNS resolver (/etc/resolv.conf).

8.10 Setting up gw manually

Let’s boot the first container: gw
Everything starts with an empty directory. This is where we will instantiate the file system used by gw:

$ mkdir gw

Use the Arch Linux install script from the sadm repository to populate it. Here is how to use it:

./install_scripts/bootstrap_arch_linux.sh /path/to/container machine_name ./file_
↪→containing_plaintest_root_pass

48 Chapter 8. Container setup for SADM

Prologin System Administration, Release 2020

We suggest storing the password in a text file. It’s a good way to be able to to reproduce the setup quickly. If you don’t
want that, just create the file on the fly or delete it afterwards.
The first system we build is gw, so let’s create the container accordingly. Run it as root:

./install_scripts/bootstrap_arch_linux.sh /path/to/gw gw ./plaintest_root_pass

Packages will get installed a few scripts run to configure the Arch Linux system. This is the same script we use for the
bare metal or VM setup.
Then, start the container with a virtual ethernet interface connected to the vz-prolo network zone, a bridge interface
managed by systemd, as well an ipvlan interface linked to your uplink:

systemd-nspawn --boot --directory /path/to/gw --network-zone=prologin

Note: To exit the container, press ‘ctrl+]’ three time. systemd-nspawn told you that when it started, but there is
good chance you missed it, so we are putting it here just for you :)

You should see systemd booting, all the units should be OK except Create Volatile Files and
Directories. which fails because /sys/ is mounted read-only by systemd-nspawn. After the startup you
should get a login prompt. Login as root and check that you see the virtual interface named host0 in the container using
ip link:

ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT␣
↪→group default qlen 1

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: host0@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode␣
↪→DEFAULT group default qlen 1000

link/ether e6:28:86:d2:de:6e brd ff:ff:ff:ff:ff:ff link-netnsid 0

The host system should have two new interfaces:
• vz-prolo, a bridge type interface.
• vb-gw, a veth device whose master is vz-prolo, meaning it’s wired in this bridge.

Both these interface have an extra@... suffix. It is not part of the interface name and simply indicates their peer interface.
If you are running systemd-networkd on your host system, with the default configuration files, the vz-prolo
interface will get an IP from a private subnet and a MASQUERADE rule will be inserted into iptables. You can start
systemd-networkd inside the container to get an IP in the vz-prologin network, which will be NAT’ed to your
uplink.
For some reason host0 cannot be renamed to prologin by a systemd-networkd .link file. What needs to be
changed to account for that is:

• The firewall configuration
You can do the usual install, with the following changes:

• In prologin.network, in [Match], set Name=host0 to match the virtualized interface.
What will not work:

• Some services are disabled when run in a container, for example systemd-timesyncd.service.
• nic-configuration@host0.service will fail (Cannot get device pause settings: Op-
eration not supported) as this is a virtual interface.

8.10. Setting up gw manually 49

Prologin System Administration, Release 2020

Note: When you exit the container everything you started inside it is killed. If you want a persistent container, run:

systemd-run systemd-nspawn --keep-unit --boot --directory /full/path/to/gw --
↪→network-zone=prologin
Running as unit run-r10cb0f7202be483b88ea75f6d3686ff6.service.

And then monitor it using the transient unit name:

systemctl status run-r10cb0f7202be483b88ea75f6d3686ff6.service

8.11 Manual network configuration

This section is a do-it-yourself version of the --network-veth --network-bridge=prologin nspawn’s ar-
guments. The main advantage of doing so is that the interfaces are not deleted when the container is shut down. Its useful
if you have iptables rules you want to keep.
First let’s make sure we have ip forwarding enabled, without that the bridge will move packets around:

echo 1 > /proc/sys/net/ipv4/ip_forward

We will create a bridge interface named prologin that will represent the isolated L2 network for SADM:

ip link add prologin type bridge

You can now see the prologin interface using:

ip link show
...
4: prologin: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN␣
↪→mode DEFAULT group default qlen 1000

For each system we want to start, we create a veth and plug one end to the bridge. For example for the gw:

ip link add gw.local type veth peer name gw.bridge
ip link show label 'gw*'

Here we create the two virtual ethernet interfaces, gw.local@gw.local and gw.bridge@@gw.bridge. On veth
pairs, a packet arriving to one these interface is dispatched to the other. When manipulating them only the part of the
name before the @ is required, the other is just a reminder of what interface is at the other end.
Let’s wire gw.bridge to the bridge:

ip link set gw.bridge master prologin

You can see that the interface is connected to the bridge with the master prologin keyword on the following
command:

$ ip link show gw.bridge

The interface is not running (state DOWN), we have to enable it:

ip link set dev prologin up

50 Chapter 8. Container setup for SADM

http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/

CHAPTER

NINE

GOING FURTHER/DISCUSSION

What could make your container usage better?
• Use the --overlay option from systemd-nspawn. Have only one base Arch Linux distro and build other
systems form it. It reduces the time to install and disk usage (if that’s your concern).

51

Prologin System Administration, Release 2020

52 Chapter 9. Going further/discussion

CHAPTER

TEN

DISASTER RECOVERY

What to do when something bad and unexpected happen.
Here are the rules:

1. Diagnose root cause, don’t fix the consequences of a bigger failure.
2. Balance the “quick” and the “dirty” of your fixes.
3. Always document clearly and precisely what was wrong and what you did.
4. Don’t panic!

10.1 Disk failure

10.1.1 Hard fail

The md array will go into degraded mode. See /proc/mdstat.
If the disk breaks when the system is powered off, the md array will start in an inactive state and your will be dropped in
the emergency shell. You will have to re-activate the array to continue booting:

$ mdadm --stop /dev/md127
$ mdadm --assemble
$ mount /dev/disk/by-label/YOUR_DISK_ROOT_LABEL new_root/
$ exit # exit the emergency shell and continue the booting sequence

53

Prologin System Administration, Release 2020

54 Chapter 10. Disaster recovery

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex
• modindex
• search

55

	Infrastructure overview
	Needs
	Network infrastructure
	Machine database
	User database
	File storage
	DHCP and DNS
	Matches cluster
	Other small services

	Setup instructions
	Step 0: hardware and network setup
	Step 1: setting up the core services: MDB, DNS, DHCP
	Step 2: file storage
	Step 3: booting the user machines
	Step 4: Concours
	Step 5: Setting up masternode and workernode
	Step 6: Switching to contest mode
	Common tasks

	Misc services
	/sgoinfre
	doc
	paste
	Redmine
	Homepage
	DJ-Ango
	IRC

	Monitoring
	Setup
	Monitoring services
	Grafana configuration
	Monitoring screen how-to
	Log monitoring

	Arch Linux repository
	Usage
	SADM related packages
	Uploading packages
	More information
	Troubleshooting

	Cookbook
	Server setup
	Testing on qemu/libvirt
	User related operations
	Machine registration
	Network FS related operations

	Running the websites without a complete SADM setup
	Working on concours

	Container setup for SADM
	Why containers?
	Overview
	Networkd in your base system
	Automated container setup
	What do the scripts do?
	BTRFS snapshots
	Cleaning up
	Containers deep dive
	Virtual network setup
	Setting up gw manually
	Manual network configuration

	Going further/discussion
	Disaster recovery
	Disk failure

	Indices and tables

